Year 10 Chemistry booklet Topic 3 – Energy and Analysis

Name: _____

Energy and Analysis

Give a definition for each of these key words:

Exothermic	
Endothermic	
Enthalpy	
Activation energy	
Bond energy	
Pure substance	
Formulation	
Chromatography	
Cation	
Anion	
Halide	
Flame emission spectroscopy	

Looking at energy changes

Making and breaking bon	<u>ds</u>		
			in the reactants must be
broken so that new bonds ir	າ the can be ma	ide.	
Breaking chemical proc		ergy – energy must be pu	it in so it is an
		n out – it is an	process.
			ds are made, a reaction is
If more energy is RELEASE reaction is EXOTHERMIC.	:D when new bonds are	made than is needed to	break the old bonds, a
Energy level diag	rams		
1. Exothermic	2. En	ndothermic	
	_		
3. Including the activation	ı energy – exothermic	4. Including activation	n energy - endothermic

Bond Enthalpy and Energy Calculations

BOND ENTHALPY

- This is the average energy required to break the bond in 1 mole of gaseous compounds
- Bond breaking is endothermic, ΔH is +ve
- Bond making is exothermic, ΔH is –ve

WORKED EXAMPLE

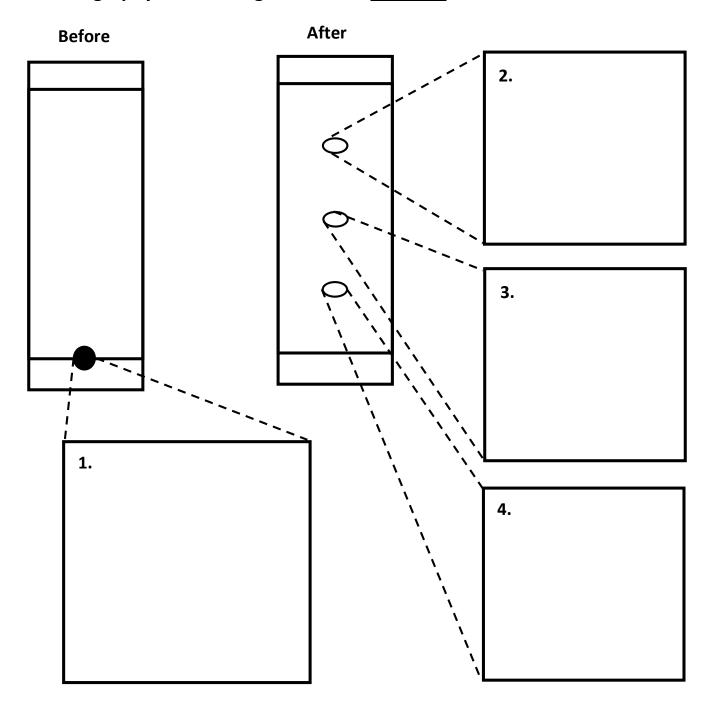
$$C_2H_6 + 3.5O_2 \rightarrow 2CO_2 + 3H_2O$$

Bonds Broken Bonds Made 1 x C-C (347) = 347 4 x C=O (805) = 3220 6 x C-H (413) = 2478 6 x O-H (464) = 2784 3.5 x O=O (498) = 1743 Total = -6004 Total = +4568

+ is the sign for bond breaking

 $\Delta H_c \left(C_2 H_6 \right) = (+4658) + (-6004) = -1346g \text{ kJ/mol}$ Energy has been released so to show ΔH we put a -ve thange when a substance burns completely in oxygen $\Delta H = -1346 \text{ kJ/mol}$ -ve energy change, this is an exothermic reaction

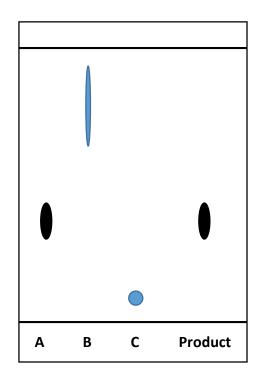
Questions

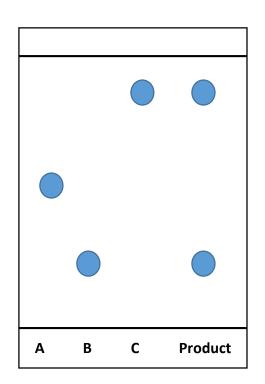

- 1. Calculate the enthalpy of combustion of hydrogen $2H_2 + O_2 \rightarrow 2H_2O$
- 2. Calculate the enthalpy of combustion of hept-1-ene

$$C_7H_{14} + 10.5O_2 \rightarrow 7O_2 + 7H_2O$$

Bond	Bond Enthalpy kJ/mol
C-C	347
C-H	413
0=0	498
О-Н	464
C=O	805
C-O	358
H-H	436
C=C	612

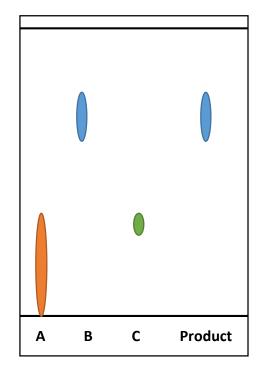
is the sign for bond making

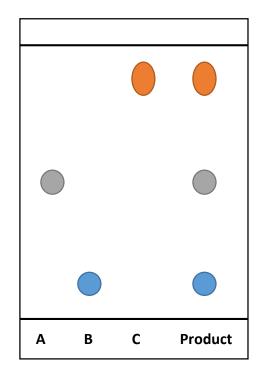

Chromatography – Draw diagrams of the particles in each of the 4 boxes



For each box, state whether it is a **mixture** or a **pure substance**:

- 1.
- 2.
- 2
- 4.


Which dye was most soluble? Why?



Product is made from......

Product is made from.....

Product is made from.....

Product is made from......

Analysing substances

You need to be able to describe and interpret a range of chemical tests for use in detecting and identifying elements and compounds. You may be asked to interpret results of tests applied to solutions or mixtures of substances in different contexts. This could include forensics, health or the environment.

Identifying the cation

Test 1 - Flame tests

These can be used to identify metal ions. You introduce the compound on a needle into a blue flame on the Bunsen burner.

Lithium compounds result in a crimson flame Sodium compounds result in a yellow flame Potassium compounds result in a lilac flame Calcium compounds result in a red flame Barium compounds result in a green flame

Test 2 - Precipitates with sodium hydroxide

Metal ion	Colour of precipitate
Calcium	white
Magnesium	white
Copper (II) Cu ²⁺	blue
Iron (II) Fe ²⁺	pale green
Iron (III) Fe ³⁺	brown

Identifying the anion

Carbonates

Metal carbonates react with dilute acids to form carbon dioxide. Carbon dioxide produces a white precipitate with limewater. This turns limewater cloudy.

Halide ions

These are ions of the halogens in group 7 of the periodic table. They form precipitates with silver nitrate in the presence of dilute nitric acid.

Silver chloride is white Silver bromide is cream Silver iodide is yellow.

Sulfate ions

Form a white precipitate with barium chloride solution in the presence of dilute hydrochloric acid.

Use the information on the previous page to work out what the following compounds are:

orown
е

Challenge:

Can you plan a sequence of steps as a flow chart that would give you the identity of and unknown salt that is formed from one of the metal cations and anions given on the previous page?

Testing Gases

Chemical	How do you test for it?	What happens?
Hydrogen		
Carbon		
Dioxide		
Oxygen		
76		
Chlorine		